Path501
Winter Quarter 2008
February 29

Dietary Restriction Mimetics

CR mimetics

Allison Grabski
Dave Niles
Veronika Glukhova
Why mimetics?

1) There is some evidence that CR in humans might be beneficial.
 - Epidemiological studies correlate incidence of disease with caloric intake.
 E.g., diabetes, neurodegeneration, cardiovascular disease.
 - Accidental CR in Biosphere 2 improved some physiological parameters.
 - Primates have a physiological response to CR that is similar to that of rodents.
 - CR has increased longevity in dogs and cows.

2) The implementation of CR in humans is not practical.
 - People get hungry without food.
 - Food tastes good.
 - Even short-term diets usually fail.
The goal of CRM is to produce some or all of these responses without actually reducing caloric intake.

Known physiological effects of CR

<table>
<thead>
<tr>
<th>Decreased body temperature</th>
<th>Decreased adipose tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased fasting insulin</td>
<td>Decreased triglycerides*</td>
</tr>
<tr>
<td>Decreased fasting glucose</td>
<td>Decreased LDL cholesterol</td>
</tr>
<tr>
<td>Increased insulin sensitivity</td>
<td>Increased HDL cholesterol</td>
</tr>
<tr>
<td>Decreased accumulation of oxidative damage</td>
<td>Increased mitochondrial biogenesis</td>
</tr>
<tr>
<td>Increased stress resistance</td>
<td>Decreased tumor growth</td>
</tr>
<tr>
<td>Decreased incidence of chronic disease</td>
<td>...and long life</td>
</tr>
</tbody>
</table>
What would we like the mimetics to accomplish?

Mutations in many genes affect aging.
→ pharmacological intervention in function of these genes should have the same effect

1) activation of stress response pathways and thus protection against stressors
 • Mitohormesis
 • Reduced oxidative stress and damage
 • Reduced DNA damage, enhanced repair
 • Reduced damage to lysosomes and peroxisomes

2) Improvement of insulin sensitivity

3) Improvement of metabolism and reduction of age-related disease, and maintenance of organismal function
Types of mimetics

Should stimulate specific pathways, inhibit DNA modification, or act as inhibitors

- Antioxidants
- Hormonal replacement
- Metabolic enhancers
- Kinase inhibitors
Currently proposed CR mimetics

<table>
<thead>
<tr>
<th>2DG</th>
<th>↓ glycolysis by inhibiting phosphohexose isomerase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biguindes</td>
<td>Type 2 diabetes drugs, inhibit gluconeogenesis and output of glucose into bloodstream</td>
</tr>
<tr>
<td>STACs</td>
<td>Sirtuin activators</td>
</tr>
<tr>
<td>Retinoids Soy isoflavones Somatostatin analogs</td>
<td>IGF1 pathway inhibitors</td>
</tr>
<tr>
<td>Thiazolidinediones (TZDs)</td>
<td>PPARγ antagonists, insulin sensitizers</td>
</tr>
<tr>
<td>BDNF</td>
<td>Brain derived neurotrophic factor</td>
</tr>
<tr>
<td>Rapamycin</td>
<td>TOR inhibitor</td>
</tr>
</tbody>
</table>
Sirolimus/Rapamycin

- Originally developed as an antifungal agent
- Currently used as an immunosuppressant drug used to prevent rejection in organ transplantation
- Has potent antiproliferative properties
 - Restenosis
 - Cancer treatment

- inhibits the response to interleukin-2 (IL-2) and thereby blocks activation of T- and B-cells.
- binds the cytosolic protein *FK-binding protein 12* (FKBP12)
- the sirolimus-FKBP12 complex inhibits the *mammalian target of rapamycin* (mTOR) pathway
TOR pathway

- PPARγ
- Ribosome biogenesis
- Secretion of mitogens and VEGF
- Changes in cell morphology
- Protein synthesis
- Cell growth

Cell growth → ⋯ → senescence

P-21 and damage-induced senescence
Inhibition of TOR pathway

Upstream (effectors):
- Akt
- insulin
- PTEN

Antagonists and downstream targets of TOR:
- Hsp70
- SIRT1
- S6K
- TOR

Insulin sensitivity has been linked to extreme longevity.
- Marker of genetically downregulated TOR activity
Resveratrol

- Polyphenolic phytoalexin produced in response to bacterial or fungal infection
- “Therapeutic properties”:
 - Cancer
 - Antiviral
 - Neuroprotective
 - Anti-aging
 - Anti-inflammatory
• Isolated in 1940 from the roots of white hellebore (Takaoka)

• In 1963 – and currently, best natural source is japanese knotweed root

• In 1992 -- presence in wine considered an explanation for “French Paradox” and cardioprotection
Anti-aging properties

• Resveratrol extends lifespan of *S.cerevisiae* (Horowitz and Sinclair, 2003)

• Also in *C.elegans* and *D.melanogaster* (Sinclair and Wood, 2004) through a Sir2 dependent manner

 – 2007 – repeated in *C. elegans* (Gruber, 2007) but could not be consistently replicated in *C. elegans or D. melanogaster* (Bass, 2007)

 – 2006 – Mice on a high fat diet (60% energy from fat, hydrogenated coconut oil) and 30% more calories than standard chow (Baur, 2006)

 • high-fat diet plus 22 mg/kg resveratrol -- 30% lower risk of death than mice on the high-fat diet.

 • Gene expression analysis -- addition of resveratrol opposed the alteration of 144 out of 155 gene pathways changed by the high-fat diet.

 • Insulin and glucose levels in mice on the high-fat+resveratrol diet were closer to the mice on standard diet.

 • Addition of resveratrol to the high-fat diet did not change the levels of free fatty acids and cholesterol
Anti-aging properties

- 2006 -- *Notobranchius furzeri* (avg. 9 week lifespan) resveratrol increased the median lifespan by 56% (Valenzano, 2006)
 - higher general swimming activity
 - better learning to avoid an unpleasant stimulus
 - slight increase of mortality in young fish caused by resveratrol (hormesis)

- Epidemiologic studies show that resveratrol lowers the risk of age-related diseases (Sinclair, 2005)

- *In vitro* – protects against: (Sinclair, 2005)
 - Oxidative stress
 - Radiation
 - ischemia
Molecular Targets

• The mechanisms of action are not fully understood
 – appear to mimic several of the biochemical effects of calorie restriction (Cell 2006)
 • Inhibit lipase
 • Reduced fat absorption
 • activates SIRT1 and PGC-1α
 • improve mitochondria function
Molecular Targets

• Thought to be one of 18 phenolic activators of human SIRT1 (Sinclair, 2005)
 – Sirtuin-activating compound (STACs)
• Increases lifespan in nematodes and
• Thought to be one of 18 phenolic activators of human SIRT1 (Sinclair, 2005)
 – Sirtuin-activating compound (STACs)
Molecular Targets

• Increase MnSOD activity by 14-fold (Ellen, 2008)

 – MnSOD reduces superoxide to H2O2 (Zsolt, 2000)
 – Superoxide O2- is a byproduct of respiration in complex 1 and 3 of the electron transport chain (Zsolt, 2000)
 – extracts an electron from biological membrane and other cell components, causing free radical chain reactions (Zsolt, 2000)

– MnSOD reduces superoxide and thereby confers resistance to: (MacMillan-Crow, 2001)
 • mitochondrial dysfunction
 • permeability transition
 • apoptotic death
Molecular Targets

- RESV --> SIRT1 / NAD+ --> FOXO3a --> MnSOD (Ellen, 2008)
 - SIRT1 dependent migration of FOXO transcription factors to the nucleus and stimulates FOXO3a transcriptional activity, enhancing deacetylation (activity) of FOXO3a (Stefani, 2007 and Brunet, 2004)
- Important in:
 - lifespan extension (Sun, 2002)
 - inhibits pancreatic cancer (Kanmar, 2003)
 - resistance to reperfusion injury (Wong, 1995)
 - irradiation damage (Hu, 2007)

- AMP-activated kinase (AMPK) - - senses cellular energy levels and is activated by increases in the cellular AMP:ATP ratio (Dasgupta, 2007)
- regulation of food intake by hypothalamic neurons
- resveratrol activates AMPK in primary neurons in vitro as well as in the brain and promoted neurite outgrowth
 - stimulates mitochondrial biogenesis through AMPK
Wine and Resveratrol

- Resveratrol is found in the skin of grapes and some seeds.
 - Quantity is variable:
 - grape cultivar
 - geographic origin
 - exposure to fungal infection
 - fermentation time
Natural abundance of Resveratrol

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>TOTAL RESVERATROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscadine Wines</td>
<td>14.1 – 40 mg/L</td>
</tr>
<tr>
<td>Red Wines</td>
<td>1.98 – 7.13 mg/L</td>
</tr>
<tr>
<td>White Wines</td>
<td>0.05 – 1.80 mg/L</td>
</tr>
<tr>
<td>Red Grape Juice</td>
<td>1.14 – 8.69 mg/L</td>
</tr>
<tr>
<td>Red Grapes</td>
<td>1.50 – 7.81 mg/kg</td>
</tr>
<tr>
<td>Peanuts (Raw)</td>
<td>0.07 – 1.78 mg/kg</td>
</tr>
<tr>
<td>Peanuts (Boiled)</td>
<td>1.78 – 7.11 mg/kg</td>
</tr>
<tr>
<td>Blueberries</td>
<td>0.03 – 0.04 mg/kg</td>
</tr>
<tr>
<td>Bilberries</td>
<td>0.01 – 0.02 mg/kg</td>
</tr>
</tbody>
</table>
• 150-lb person would have to drink 382-1648 liters of red wine per day to get the same amount as the mice in the nature paper.
Pharmacokinetics

• Resveratrol rapidly undergoes conjugation resulting in less than 5% of the oral dose being observed as free resveratrol in blood plasma.
 – 70% absorbed and 99% is quickly metabolized to conjugates using 25mg doses (Walle)
 – Half life = 9 hours

• To calculate human dose, do not use mg/kg
 – larger quantities due to slower metabolic rate therefore, mg/kcal
 – \((\text{human dose/kg}) = (\text{animal dose mg/kg}) \times (\text{animal kg/human kg})^{(1-P)}\) where P=2/3 is used by convention to give a larger margin of safety for FDA pharmaceutical and EPA toxicology uses, but P=3/4 is more accurate
Resveratrol in a pill

- Companies:
 - Biomarker Pharmaceuticals
 - Chronogen
 - GeroNova Research
 - Irazu Biodiscovery
 - Juvenon
 - Longenity

- Resveratrol nutritional supplements – became popular in 2006
 - ground dried grape skins and seeds (expensive!)
 - Japanese knotweed
 - 187 mg/kg
Other benefits of resveratrol

- **Obesity**
 - induces apoptosis in human fat cells
 - inhibits production of cytokines involved with obesity-related disorders

- **Performance enhancement**
 - 15 week resveratrol into mouse chow increased treadmill endurance (Auwerx, 2005) and supports Sinclair (target is SIRT1)

- **Anti-cancer**
 - Topical resveratrol prevent skin cancer in mice (Jang, 1997)
 - cancer chemopreventive agent - reduces colon carcinogenesis in rats and mice (Saiko and Delmas and Sale, 2003)
Other benefits of resveratrol

- Increases potency of HIV antiretrovirals (Heredia, 2000)
- HSV activates NF-κB (Faith, 2006)
 - Inhibited by resveratrol
 - multiple viral protein products reduced or blocked
 - reduced viral DNA production

- Also blocks influenza virus from transporting viral proteins to the viral assembly site, hence restricting its ability to replicate (Palamara, 2005)
Add it to the public water supply?

• Resveratrol may stimulate the growth of breast cancer cells because it is similar to a phytoestrogen
 – other studies have found that resveratrol prevents breast cancer
• resveratrol is estrogenic - interfere with oral contraceptives and that women who are pregnant or intending to become pregnant should not use the product
 – not be taken by children or under 18 as no studies have shown how it affects development
• single dose of up to 5 g = no side effects

• Exacerbate West Nile virus
 – Mediated by p53 and virus worsened by increased apoptosis
How are potential CR mimetics identified?
Evaluating CRM candidates

• The number of possible drugs and targets is large.

• The development of useful screens will be very important for the field of CRM.

• In general, actual CR must be avoided while evaluating a drug.
 – Otherwise, it is difficult to assess whether an effect is due to the drug or to CR.
Evaluating CRM candidates

- **In vitro screens**
 - Directly expose cells to the drug.
 - Measure activation of a specific target.
 - E.g., sirtuins, AMPK
 - Measure a more general response.
 - E.g., stress response from heat or free radicals
 - Evaluate drug based on post-stress survival.
 - Measure the gene expression profile (microarray).
Spindler, 2006
Evaluating CRM candidates

- *In vitro* - - (de Cabo, 2003)
 - Candidate CRM administered to mice or rats for 4 weeks
 - Draw blood and isolate serum
 - Add serum to cell culture system
 - Subject cells to a stressor and evaluate the response of target molecule or other molecules
 - Western blot
 - Real-time PCR
 - Microarray
Evaluating CRM candidates

• In vivo screens
 – Evaluate mortality.
 • This is usually the most expensive approach.
 • Interventions Testing Program is useful for this step.
 – Measure the incidence of disease.
 – Measure physiological parameters.
 • glucose, temperature, hormone profile, etc.
 – Measure the effect on tumor growth.
 – Measure the gene expression profile (microarray).
Evaluating CRM candidates

- Human systems
 - Decreased incidence of age-related diseases
 - Decreased body temperature
 - Decreased plasma insulin
 - Glucocorticoids
 - Thyroid hormones
 - Adipokines
 - Leptin and adiponectin